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Based on the recently found closed-form expressions of the Boltzmann collision in-
tegrals in a rigid-sphere gas for multi-Maxwellian distributions, a few typical sets of
contour surfaces of the integrals in the space of molecular velocities are presented.
These show graphically the tendency toward equilibriom under the influence of colli-
sions. A brief preliminary comparison with Monte Carlo results is also given.

KEY WORDS: Kinetic theory of gases; Boltzmann equation; collision integrals;
nonequilibrium in hard-sphere gases; numerical analysis of collision integrals; exact
results for coliision integrals.

1. INTRODUCTION

It has recently been shown (1-3) that, when the distribution function in a gas is
“multi-Maxwellian” (i.e., can be expressed as a linear combination of Maxwellians),
the computation of the Boltzmann collision integrals becomes feasible, and indeed
that, for a rigid-sphere gas, the results can be expressed in closed form. This provides.
us for the first time with some exact results in situations involving large departures
from equilibrium. The difficulties involved in evaluating the collision integrals in
general have encouraged, on the one hand the use of outright hypotheses on their
structure (as, e.g., in the well-known relaxation models), and on the other hand
the development of purely numerical methods, especially Monte Carlo techniques.
An assessment of the BGK model based on these exact results has already been
given.® The purpose of this note is to present some representative velocity-space
contours of the collision integrals for a Mott-Smith bimodal distribution, with a view
to illustrating graphically how collisions take a distribution toward equilibrium,
and also to enable a direct comparison with the interesting computations made by
the Monte Carlo group at Illinois,®® which are the only other results available on

1 Department of Aeronautical Engineering, Indian Institute of Science, Bangalore, India.
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the collision integrals. A fairly extensive analysis of both random and systematic
errors in such Monte Carlo work has been undertaken over a period of years,”
but it has had to rely on purely numerical methods. The present results could,
we believe, provide a more direct basis for such investigations.

2. THE CLOSED-FORM EXPRESSIONS

Details of the analysis leading to the closed-form expressions have been published
elsewhere!1-®; we only mention here the final result.
If the distribution function can be expressed as a weighted sum of Maxwellians F; ,

f= Z v, F;
Fy = nyB:[m)** exp[—By — w)]
= nyB/m)?*? exp(—%6 )

where n;, 8;, and u, are the parameters in F; , then the Boltzmann collision integrals
can be written as

(1)

A1) =LY vw I (F;, Fy) o)

For rigid spheres of diameter o, it has been shown that

AE;, Fp) = (7°0*IBf;) FiFy[(1/2R{{D(1; §; @ + R) — O(1; 4; Q — R)}
— 2BilBy) P(2; §; €] (3
where
0= §€>+ %), R=HE}—6H+ |6: X 6P

and the @ represent confluent hypergeometric functions (see Ref. 3). Thus, the calcula-
tion of # requires only the evaluation of the relevant hypergeometric functions.
A simple computer program has been written for doing this; high accuracy can
easily be achieved (eight figures in the present work) using the well-known series
representation for @ when the argument is less than 10, and an asymptotic expansion
when the argument is larger.® It must be emphasized that no numerical quadrature
is necessary at any stage for computing the collision integrals for rigid spheres.
{Work now in progress indicates, however, that, for other intermolecular force models,
at least one numerical integration may be necessary.)

3. RESULTS

Using the program mentioned above, we have, for purposes of illustration,
computed the collision integrals in a few different cases for a Mott-Smith type of
distribution

fo=(0 —v)F+vF )

where F; and F, are the Maxwellian distributions corresponding to the equilibrium
states of a monatomic gas respectively on the cold and hot sides of a normal shock.
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Table I. Intervals in Values of _# for Fig. 1¢

4.8 < A4 < 60x10 —4.7 < a < =27

3.9 B 4.8 x 1072 -2.7 b —1.5

3.1 C 3.9 x 102 —0.29 ¢ —0.16

2.0 D 2.5 x 1072 —1.0 d —0.83 x 102

0.52 E 0.65 x 1072 —0.83 e —0.69 x 10—

0.27 F 0.33 x 102 —0.58 f —0.44 x 102

0.75 G 1.1 x 10-® —0.34 g —0.26 x 10~

0.22 H 0.34 x 10°° —0.20 h —0.16 x 10

0.91 I 1.6 x 10-° —-1.2 i —0.92 x 10-*

0.86 J 1.6 x 10~® —0.71 J —0.54 x 10-

0.15 K 0.27 x 10°¢ —0.33 k —0.25 x 10-®
—0.15 i —0.11 x 10~
—0.67 m —0.30 x 10
—1.3 n —0.59 x 10
—0.26 7 —0.12 x 10~®
—1.2 q —0.51 x 10~*
—0.51 r —0.23 x 10-%
—0.23 s —0.10 x 10-¢
—1.0 t —0.45 x 10~
—-0.45 u —0.20 x 1077
—2.0 y —0.89 x 1078
—0.4 w —0.18 x 1078

@ Mott-Smith distribution at M; = 10.0, v = 0.5. Values in units of n, g, o2
Table 1. Intervals in Values of # for Fig. 2°

09 < A4 < 11x10™* —2.0 < a < -—14

0.87 B 0.96 x 107! —1.4 b —0.9

0.57 C 0.79 x 10 —0.6 ¢ —0.4

0.29 D 0.40 x 107! —1.8 d —1.2 x 101

0.11 E 0.15 x 10 —2.9 e —2.6 x 10~

0.27 F 0.38 x 102 —-2.6 f —2.4 x 102

0.12 G 0.18 x 102 —2.4 g —1.5 x 102

0.24 H 0.36 x 103 —1.5 h —0.94 x 102

0.32 1 047 x 1074 —94 i —5.9 x 1073

0.38 J 0.67 x 10-¢ —-3.7 J —2.3 x 103
—1.4 k —0.9 x 10~
—5.6 l —35 x 10
—14 m —0.85 x 10~*
—1.6 n —0.91 x 10~*
-0.3 P —0.17 x 10~*
—1.7 q —0.97 x 10~
—0.97 r —0.55 x 10°®
—0.55 $ —0.28 x 10-¢
—0.28 t —0.14 x 10-®
—14 u —0.69 x 1077
—0.69 y —0.35 x 1077
—0.87 w —0.43 x 10°®
—0.22 x —0.11 x 108

2 Mott—-Smith distribution at M; = 5.0, v = 0.5. Values in units of », 8, o
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Table Hll. Values of # and Intervals for Fig. 3¢

0.09
0.05
102
10-®
10

—0.6
—0.2
—0.1
—3.5 x 102
—3.0 < 102
—2.0 X 102
—1.0 X 102
~0.5 x 102
—0.25 x 102
-0,10 x 10~
—5.0 x 104
—0.5 x 104
< —38 x 10
—0.7 X 10°¢
—-2.3 X 1077
—1.3 x 10~
—4.3 x 108
—4.5 x 10-®
—1.7 x 101

L RaN--IEN

—66 <
—1.2
—4.0
—23
-~7.5
—8.0
—3.0

Me TR oYy ARSI YN 8 e R

e Mott-Smith distribution at M, = 3.0, » = 0.5, Values in units of n, 8, 0%

The results are available in the form of tables? if accurate numerical values are desired,
but are otherwise most conveniently displayed in the form of contours in velocity
space, of the kind shown by Nordsieck and Hicks.®® Because of the symmetry of
the distribution (4) about the v, axis (v, being the component of the molecular
velocity along the flow direction x), it is enough in this case to show a section of
the contour surfaces in v-space by a plane through the v, axis (v, being the normal
coordinate in this plane). Such contours can effectively be produced by the computer
itself, if suitable format instructions are incorporated in the program. Figures 1 and 2
show contours obtained this way; the lines shown have been drawn in on the computer
sheets, joining printout symbols representing the same interval of _#. The labels on
the curves stand for intervals in values of _# as shown in the Tables I and II.

Although this method of obtaining contours is the most convenient, its accuracy
is limited by the number of symbols available on the printer and certain other similar
considerations. In one case, we have used a more accurate “manual” procedure,
in which the contours have been drawn by interpolating among the values of _¢
computed on a fine grid in velocity space. The results obtained this way are shown
as full lines in Fig. 3 (see Table III for appropriate values); the dashed lines in this
diagram have again been obtained directly from the computer.

These diagrams show vividly how collisions tend to drive a system toward
equilibrium. Comparison with the corresponding distribution function (whose shape
at v, = 0 is displayed in the background in all the three diagrams) shows that in

2 Available on request from the authors.
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My=3-0, V=05

Fig. 4. Collision integral contours for the same distribution as in Fig. 3, as obtained from one
Monte Carlo ran (Yen, private communication). Average contour values, in arbitrary units, are given
in Table IV.

each case there is a loss of molecules (# < 0) from the supersonic “peak™ (ie.,
the region in velocity space around v, ~ u; , the gas velocity on the supersonic side of
the shock), and also from the region corresponding roughly to v, <0 (ie., to
molecules coming from the hot side}. In between is a region where the gain pre-
dominates (_# > 0). The general tendency therefore is (as might be expected) to level
down the peaks and fill up the valleys in the distribution.

Recalling that the diagrams show a section of the contour surfaces in v-space,
we can describe the results in greater detail as follows. There is a ball (or, more
precisely, a spheroidal shape) roughly around the supersonic gas velocity on the
cold side, in which the loss predominates (_# < 0). This is surrounded by a region,
contained within an oblate spheroidal shape, in which the gain predominates (¢ > 0).
Between these two surfaces (marked Z in the diagrams), # attains a maximum value
on some ring (within the surface marked A). Beyond the second spheroid Z, 7 is
again negative and eventually approaches zero at large velocities.

Table IV, Average Contour Values (in arbitrary units) for Fig. 4

4 175 x 10— a —1000 X 10-5
B 130 x 10— b —500 x 10-5
c 100 x 10- ¢ —200 x 10-5
D 50 x 10~ d —50 x 10—
E 10 x 10 e —25 x 10-5
F 3 x 1075 f —10 x 10~
G 1 x 10-5 < —6 X 105
h -2 x 10
i 0
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To enable a comparison with Monte Carlo results, we reproduce the contours
obtained by Yen in Fig. 4 (see Table IV for appropriate values), which can be
directly compared with Fig. 3, as both computations are for the same distribution.?
It is interesting that many of the gross features of _# are reasonably well displayed
by the Monte Carlo results. A detailed numerical comparison is not immediately
possible, because the normalization used in the Monte Carlo results is not accurately
known. However, even a cursory comparison reveals certain qualitative features
which may need improvement in the Monte Carlo results. We may mention the shape
of the zero lines (Z in our diagrams), the slope of the contours as they come in
toward the v, axis, and the presence of saddle points at large velocities.
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3 Prof. Yen has informed us that Fig. 2 of Ref. 5 is wrongly captioned, and is not a plot of contours
of # but of v, #. Comments made in an earlier report'® therefore need to be modified slightly as
here.



